La mitocondria ya no es lo que era

Un equipo de científicos españoles, con participación de profesores de la Pablo de Olavide, hace un descubrimiento sobre el funcionamiento celular que "cambiará los manuales de bioquímica"

El catedrático de la Universidad Pablo de Olavide Plácido Navas
El catedrático de la Universidad Pablo de Olavide Plácido Navas
R. S.

29 de junio 2013 - 05:03

Un equipo de investigadores españoles con participación de profesores de la Universidad Pablo de Olavide y liderado por José Antonio Enríquez, del Centro Nacional de Investigaciones Cardiovasculares (CNIC), ha publicado en Science un hallazgo que, con toda seguridad, hará modificar los manuales de bioquímica, ya que supone una completa reformulación del funcionamiento de la mitocondria y explica cómo las células generan energía a partir de los nutrientes.

El CABD, Centro Andaluz de Biología del Desarrollo (Universidad Pablo de Olavide de Sevilla-CSIC) -en concreto, el catedrático de la UPO Plácido Navas y la doctora María Ángeles Rodríguez-Hernández-, ha participado en este trabajo desarrollado por el CNIC junto a otras instituciones científicas españolas.

Este hallazgo supone la confirmación de una propuesta realizada en 2008 por los mismos investigadores, consecuencia de observaciones que no podían ser explicadas por el modelo que hasta entonces describía cómo funcionaba la mitocondria, una parte del interior de las células que, entre otras tareas, se encarga de extraer y convertir la energía de los alimentos en formas utilizables por las células para sus procesos vitales.

El consumo, digestión y asimilación de alimentos en el cuerpo tiene por objeto final alimentar a todas y cada una de las células que lo constituyen. En todo este proceso, que ocurre en el exterior de las células, se consume energía, pero es necesario para desmenuzar y romper los componentes de los alimentos en compuestos sencillos como la glucosa de los azúcares, los amino ácidos de las proteínas y los ácidos grasos de las grasas. Estos componentes desmenuzados pueden entrar en las células y ser procesados en sus mitocondrias para generar energía.

"Entender cómo ocurre la generación de energía en las células es fundamental para entender la vida y, durante gran parte del siglo pasado, fue el objeto de estudio de la bioquímica. A finales de los 70 y principios de los 80 se consideró que el misterio de cómo la mitocondria realizaba esta tarea estaba resuelto y en los 90 se obtuvo un increíble detalle de las estructuras moleculares que lo realizaban. Se consideraba el proceso mejor conocido y mejor entendido de cuantos sucedían en la célula", explica el doctor Enríquez, investigador principal del estudio publicado en Science.

Como indican los investigadores, las moléculas de alimento se almacenan en la célula en forma de electrones de alta energía, pero en dos tipos de molécula: las N o las F, cuya proporción varía según el tipo de alimento. Estas moléculas no pueden liberar energía de forma fácil y universal para desarrollar los procesos necesarios para la supervivencia, mantenimiento, crecimiento y división celulares ni para su coordinación.

Es ahí donde entra en juego la mitocondria que, a través de cinco máquinas moleculares, los complejos I, II, III, IV y V, convierte la energía en una molécula utilizable universalmente, llamada ATP. Hasta hace muy poco se aceptaba que estos complejos "nadaban" libres en la membrana interna de la mitocondria y no interaccionaban entre sí, algo que se ha demostrado incorrecto en el trabajo realizado por los investigadores españoles. "Los cinco complejos no se mueven siempre de forma independiente en la membrana" explica el doctor Enríquez. "Por el contrario, se asocian físicamente en combinaciones distintas denominadas supercomplejos respiratorios (SCI). Nuestro trabajo explica las consecuencias funcionales de estas interacciones".

Según el artículo, estas asociaciones son dinámicas y se modifican para optimizar la extracción de energía de las moléculas F y N dependiendo de su abundancia, es decir, dependiendo de los alimentos que se hayan consumido. En el trabajo de Science se describen estos supercomplejos y sus funciones. "Lo que quiere decir es que el sistema para optimizar la extracción de energía de los alimentos es mucho más versátil de lo que se creía y puede modularse de formas inesperadas para ajustar a la composición de los alimentos de la dieta o especializarse para funciones específicas en tipos celulares concretos", señala.

stats